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The purpose of this article is to formalize the generalization criterion
method for model comparison. The method has the potential to provide
powerful comparisons of complex and nonnested models that may also differ
in terms of numbers of parameters. The generalization criterion differs from
the better known cross-validation criterion in the following critical procedure.
Although both employ a calibration stage to estimate parameters, cross-
validation employs a replication sample from the same design for the validation
stage, whereas generalization employs a new design for the critical stage.
Two examples of the generalization criterion method are presented that
demonstrate its usefulness for selecting a model based on sound scientific
principles out of a set that also contains models lacking sound scientific
principles that are either overly complex or oversimplified. The main advantage
of the generalization criterion is its reliance on extrapolations to new conditions.
After all, accurate a priori predictions to new conditions are the hallmark of
a good scientific theory. � 2000 Academic Press

Rapid advancements in computing technology have facilitated the use of
increasingly complex models of human behavior. Examples include production rule
models of problem solving, neural network models of language development, or
diffusion models of signal detection. Corresponding to this rise in model complexity,
there is an increasing need for rigorous methods that can be used to compare the
scientific value of complex models (see, e.g., Jacobs 6 Grainger, 1994). The problem
of comparing and selecting models for complex systems is difficult because
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the models being compared may differ in terms of function class and parameter
dimensionality. One model may fit better than another simply because it has a more
flexible function form or more parameters than the other and not because it is
based on better scientific principles (see Collier, 1985; Cutting, Bruno, Brady, 6

Moore, 1992).
Many researchers believe that the best method for comparing models is the strong

inference test (Platt, 1964). Essentially, this method requires deriving a priori and
parameter-free predictions concerning the rank ordering of performance across a set
of experimental conditions, where each class of models predicts a unique rank
order. Model selection is based on eliminating the classes of models that predict
rank orders contrary to the observed results. In other words, this tests the
qualitative properties derived from models, and no parameter estimation or quan-
titative model fitting is necessary.

Strong inference tests have been developed for a limited number of domains in
psychology. For example, measurement theorists have developed ordinal tests for
choosing among polynomial measurement classes (see Krantz 6 Tversky, 1971),
and response time theorists have developed ordinal tests for choosing among
information processing architectures (see Schweickert, Fisher, 6 Goldstein, 1998;
Townsend, 1990).

Often the strong inference test cannot be applied to complex models because it
is too difficult or impossible to derive parameter-free predictions. Even when it is
possible, it is still informative to quantitatively evaluate the magnitude of the
prediction errors. Scientists are rarely satisfied with a model that predicts the
correct order, but makes dramatically incorrect predictions regarding magnitude.

The purpose of this article is to present a quantitative method for comparing
complex models called the generalization criterion. Like strong inference, the
generalization criterion is based on a priori predictions (made before observing the
data) rather than post hoc fits (made after observing the data). However, unlike
strong inference, the generalization criterion uses parameter dependent quantitative
predictions from complex models. The generalization criterion has been employed
informally for many years, but this article serves the purpose of formally identifying
the procedures so that the method becomes generally recognized and applied.

The remainder of this article is organized as follows. First we review the scientific
goals upon which model selection is based, second, we examine several existing
model comparison methods with respect to these goals, then we present the
generalization criterion procedure and provide some example demonstrations of
this method, and we finish with a discussion of ways to broaden the applicability
of the method.

I. SCIENTIFIC GOALS FOR MODEL SELECTION

There are general agreements among scientists about some of the goals of science.
The primary goal is to build general theories that are founded on sound scientific
principles which explain existing facts in a rigorous manner, and more importantly,
they are useful for deriving accurate a priori predictions for new findings under
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novel conditions. The derivation of predictions normally requires the construction
of a detailed model from the general theory for the specific situation under
investigation (see Anderson, 1993). While the detailed model is primarily based on
key theoretical principles, the general theory fails to completely specify all of the
details for every situation. Minor ad hoc assumptions must be attached to form a
computational model. For example, a theory may provide the basic causal structure
or information processing architecture, but specific measurement assumptions (e.g.,
linearity) or distribution assumptions (e.g., normality) may need to be added to
make a computational model.

Therefore the model is partially based on auxiliary details or minor ad hoc
assumptions that fall outside the general theory and could be wrong. So when two
or more models are compared, scientists are mainly interested in determining which
general theory is better, and he or she is less interested in the possibly incorrect
auxiliary assumptions used to construct each model. This view of model construction
implies that all models are wrong in detail. Scientists are more interested in
identifying the model based on sound scientific principles that permit one to make
new a priori predictions under novel conditions.

Scientists often distinguish between models based on sound scientific principles
from two other extreme types of models��oversimplified and overly complex
models. By definition, both of the latter types lack sound scientific principles, but
they have advantageous mathematical or statistical properties. To illustrate these
ideas in a concrete manner, consider the problem of selecting a model for the
forgetting curve in human memory (see, e.g., Rubin 6 Wenzel, 1996; Wickens,
1998; Wixted 6 Ebbesen, 1991).

Oversimplified models are based on simplifying assumptions and a small number
of parameters. For example, one could linearly regress percent recall on time delay
to model forgetting, but this simple linear regression model violates known prin-
ciples from human memory research. Nevertheless, if the sample size is small and
the data are very noisy, then this linear model may fit about as well as other models
based on sound scientific principles. The robustness of linear models makes them
relatively effective for fitting very noisy data under small sample sizes (see Dawes
6 Corrigan, 1974).

Overly complex models are based on an excessively large number of parameters.
For example, one could fit percent recall as a function of time delay by a high order
polynomial regression model. Like the linear model, the polynomial model violates
known principles from human memory research. Nevertheless, if the sample size is
large and the data are not very noisy, then this model could fit better than models
based on sound scientific principles. The flexibility of such models allows them to
provide good post hoc fits without using any knowledge about the principles
governing the causal relations.

For basic science, the first requirement of a model comparison method is that it
selects a model based on sound scientific principles from a set that also includes
oversimplified and overly complex types that lack such principles. The problem
with many existing methods is that they tend to miss the model based on sound
scientific principles, and instead they tend to pick out either an oversimplified
model or an overly complex model that lacks these principles.
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There is a second requirement that needs to be discussed, but first a few definitions
are required to clarify the presentation. Consider an experiment that was
designed to compare two complex models, models a versus b, where the models
may be nonnested and may even differ in terms of numbers of parameters. Model
a is nested within model b if model a is a special case or restricted version of model
b. In other words, for a given design, any set of predictions produced by model a
can also be produced by model b.

Define X as a fixed design matrix where each of the K rows is used to code the
experimental design. For example, the first two columns could represent intensity
and duration measurements for each stimulus, and each row could represent one
of the K different stimuli presented to a subject. Define N as the sample size or
number of independent replications for each row of the design. Define S(X) as a
K-dimensional vector of sample statistics (sample proportions, means, covariances,
etc.), and

+(X )=p lim
N � �

S(X )

represents the corresponding population values (population proportions, means,
covariances, etc.).

The predictions of each model depend on a collection of parameters (such as the
intercept, slope, and exponent of a power function) which are represented by a
parameter vector %m for model m. The predictions are considered a priori when the
parameters are estimated from past experiments and used to make predictions for
a new experimental design. The predictions are considered post hoc when the
parameters are estimated from the current experiment and are used to make predic-
tions for exactly the same experimental design.

In general, define Qm[X, %m] as a K-dimensional vector of predictions generated
from model m (m=a or m=b) for design X using parameters %m . These predictions
may be either a priori or post hoc, depending on the nature of the research. Define
D[Q, V ] as a nonnegative measure of the lack of fit, that is the discrepancy
between some prediction vector Q and some target vector V (e.g., the sum of
squared deviations between the predictions and the data or the negative log
likelihood of the data given the predictions).

Figure 1 depicts the relationships between these concepts (see Linhart 6

Zucchini, 1986, for a related discussion). The branch labeled : represents the
population discrepancy

:m=D[Qm[X, %m], +(X )]

between the actual population values and the model predictions using the
parameters %m ; the branch $ represents the sample discrepancy

$m=D[Qm[X, %m], S(X )]
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FIG. 1. Array of discrepancies.

between the actual sample statistics and the same model predictions using the same
parameters %m ; finally, the branch labeled = represents the sampling error or
difference between the population values and the sample statistics.

Obviously, researchers would like to know the population discrepancy, :m , but
because of practical concerns, they are limited to observing the sample discrepancy,
$m , which is contaminated by unwanted sampling error =. To achieve rigorous tests
of models, scientists minimize sampling error by choosing a large sample size that
provides precise estimates of the sample statistics. If a model comparison method
fails to achieve the goal of selecting models with sound scientific principles under
the ideal conditions at the population discrepancy level, there is little reason to
believe that it will be effective for this purpose under noisy conditions at the sample
discrepancy level. Therefore, the second requirement of a model comparison
method for scientific purposes is that it should be effective at the population
discrepancy level (i.e., as N � �).

In summary, the goal of a model selection method is to help pick out a model
based on sound scientific principles from a set that includes oversimplified and
overly complex models, and furthermore, this method should be most effective at
very large sample sizes that closely approximate the population discrepancy level of
analysis. However, if the parameters are estimated in a post hoc manner, this goal
is hard to achieve in practice��typically the most complex model is selected.
Fortunately, the odds of achieving these goals are greatly increased when the
models are compared on the basis of a priori predictions.

II. REVIEW OF COMMONLY USED METHODS

Chi-square test. The most commonly used method of model comparison is (a)
to fit each model to the entire data set using a maximum likelihood criteria, and
then (b) to compare the model fits using a chi-square test based on the log
likelihood ratio statistic (Wilks, 1938; see Mood 6 Graybill, 1963),

G2(a, b)=&2 } ln[La(X, %a)�Lb(X, %b)], (1a)

where La(X, %a) is the maximum likelihood for model a and Lb(X, %b) is the
maximum likelihood for model b. It is convenient to rewrite the chi-square criterion
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in terms of a comparison of the average log likelihood for each model (sample
discrepancies),

G2(a, b)�2N=($a&$b), (1b)

where
&$m=ln[Lm(X, %m)]�N

is the average over the N individual log likelihood terms produced by each
independent observation i=1, ..., N for model m.

The chi-square criterion measures the increase in discrepancy produced by
changing from a general (model b) to a more specific model (model a). This method
is limited to comparisons among nested models (model a is nested within model b),
and the nested relation between the two models implies that model b must produce
a smaller discrepancy than model a. If the chi-square criterion exceeds a cutoff, then
the null hypothesis (H0) is rejected, which implies no significant model differences.
Usually this means testing the null hypothesis (H0) that one or more parameters in
the more complex model (e.g., model b) are equal to some fixed values (e.g., zero)
when the model is fit to the population values. This limitation to nested model
comparisons is a serious drawback, because scientists are generally more interested
in comparisons among qualitatively different, nonnested models. To use this test,
one must also assume that the true data generating process is nested within the
most complex model.

It is well known that this method tends to pick the oversimplified model (fails to
reject H0) with small sample sizes that suffer from a lack of statistical power, and
it tends to pick the overly complex model (rejects H0) in large sample sizes that
enjoy extremely high statistical power (see Cudeck 6 Browne, 1983). The latter
tendency is due to the fact that the additional flexibility provided by the more
complex model produces a better fit, $b&$a<0, and this improvement is magnified
by the sample size N [see Eq. (1b)].

AIC. The Akaike information criterion (AIC; Akaike, 1973; also see Rust,
Simester, Brodie, 6 Nilikant, 1995, for a review of this and other related criteria)
is rapidly becoming more popular among scientists, primarily because it permits
comparisons between nonnested models that may also differ in terms of numbers of
free parameters. (A closely related method is the Bayesian information criterion,
also known as the BIC; Schwarz, 1978.) The purpose of the AIC is to select a
model that produces the smallest expected discrepancy, where the expectation is
taken across the population of replications generated by a fixed design (see
Bozdogen, 2000). A complex model may give the smallest discrepancy for the
particular replication of the design to which it was fit, but it may give a larger
expected discrepancy, averaged across many replications of the design.

The AIC uses the G2 discrepancy measure in Eq. (1a), but it adds a penalty factor
that is proportional to the difference in the number of parameters between two
models,

AIC(a, b)=G2(a, b)+2p, (2a)
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or alternatively

AIC(a, b)�2N=($a&$b)+p�N, (2b)

where p is the number of free parameters in %a minues the number of free
parameters in %b .

Note, that the penalty term is relatively more important for small sample sizes,
which increases the tendency to select simpler models. However, as the sample size
increases (N � �), then the AIC produces the same selection as the chi-square
criterion. In short, similar to the chi-square method, it tends toward overly complex
models with large sample sizes (for an example, see Browne, 2000).

Cross-validation criterion. Mosier (1951) presented the first clear presentation of
the cross-validation criterion, and subsequently it has been elaborated by Mosteller
6 Tukey (1977) and Stone (1974) for regression, and Cudeck and Browne (1983)
for covariance structure analysis. A recent overview of this method is provided by
Camstra and Boomsma (1992).

The essential idea is to randomly divide the total sample of size N into two sub-
samples of sizes N1 and N2 (N1+N2=N), producing two statistically independent
vectors of sample statistics: S1(X ) and S2(X ). During the first calibration stage, best
fitting parameter estimates %a(S1) for model a

�
are obtained by from S1(X ) by

selecting parameters that minimize the discrepancy

D[Qa[X, %a(S1)], S1(X )]

and similarly best fitting parameter estimates %b(S1) for model b
�

are obtained from
S1(X ) by selecting parameters that minimize

D[Qb[X, %b(S1)], S1(X )].

Any legitimate discrepancy measure could be used to define D in the above
calculations, including for example, the negative average log likelihood or a
weighted sum of squared prediction errors. Then during the second validation stage,
the previously estimated parameters from stage 1 are used again to compare the
two models in terms of their predictive performance using the second independent
sample:

cv=D[Qa[X, %a(S1)], S2(X )]&D[Qb[X, %b(S1)], S2(X )].

If cv>0, then choose model b, and if cv<0, then choose model a.
This process can be repeated many times by using different divisions of the

calibration and test samples to produce a distribution of cv statistics, from which
one can compute the mean and standard deviation of the cv statistics (see Browne,
2000).

Like the AIC, the usefulness of cross-validation is limited to small sample sizes.
For large sample sizes, cross-validation provides little or no additional information
over a direct comparison of models using only the calibration stage. This is true for
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the following simple reason: As N � �, the sample statistics produced by the
calibration sample converge to the same population values as the sample statistics
produced by the validation sample, and consequently, the discrepancy measures for
the calibration and validation stages will converge to identical magnitudes. There-
fore, if the more complex model provides a lower discrepancy for a large calibration
sample, it is almost guaranteed to produce a lower discrepancy for a large validation
sample because the large sample statistics produced by the two samples are almost
identical. Formally,

p lim
N � �

S1(X )=+(X )=p lim
N � �

S2( )

and

p lim
N � �

%m(S1)=%m(+),

therefore

p lim
N � �

D[Qm[X, %m(S1)], S1(X )]

=D[Qm[X, %m(+)], +(X )]

=p lim
N � �

D[Qm[X, %m(S1)], S2(X )].

In short, there is only a calibration stage and no validation stage for large samples.
For the purpose of selecting models based on sound scientific principles, the larger
the sample the better are the conditions for comparing models, but cross-validation
is not very useful in this ideal case. In fact, it has been shown that the cross-validation
criterion is asymptotically equivalent to the AIC (Stone, 1977; Browne 6 Cudeck,
1989). Like the AIC, cross-validation tends to pick the more complex model in
large samples (for an example, see Browne, 2000).

III. GENERALIZATION CRITERION

Mosier (1951) suggested an alternative method for comparing models called the
validity generalization criterion that has received much less attention. Unlike cross-
validation, which takes two samples from exactly the same design, the key idea is
to employ two completely different designs. More specifically, the total design X is
divided into two subdesigns X1 and X2 producing two statistically independent
vectors of sample statistics: S1(X1) and S2(X2). During the calibration stage, the
parameter estimates %a for model a

�
are obtained by minimizing the discrepancy

using the first design X1 ,

D[Qa[X1 , %a(S1)], S1(X1)],

and the parameter estimates %b for model b are also obtained by minimizing

D[Qb[X1 , %b(S1)], S1(X1)].
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Then during the second generalization stage, the previously estimated parameters
obtained from design X1 are used again to compare predictive accuracy for the
second design X2 :

g=D[Qa[X2 , %a(S1)], S2(X2)]&D[Qb[X2 , %b(S1)], S2(X2)].

If g>0, then select model b, and g<0 then select model a. Note that the model
comparisons for the second stage are based on a priori predictions concerning
new experimental conditions. Essentially, this tests the models ability to accurately
interpolate and extrapolate, which is one of the major goals of a general scientific
theory.

The generalization criterion method consists of the following steps:

1. Partition the complete design X into two subdesigns, a calibration design
X1 and a generalization design X2 . The calibration design must provide precise
estimates of the model parameters, and the generalization design must include
conditions that distinguish the predictions of models being compared.

2. Using the calibration design, estimate the parameters for each model
%m(X1 ) that minimize a discrepancy D between the model predictions and the
calibration sample statistics S(X1). (E.g., D can be defined as the negative log
likelihood or weighted sum of squared errors.)

3. Check the standard errors of the parameter estimates to ensure that they
are estimated with sufficient precision. (E.g., each parameter makes a statistically
significant contribution to the fit in step 2. If the precision is inadequate, then redo
step 1.)

4. Using the same parameter estimates from step 2, compute the new predictions
for each model for the generalization design, Qm[X2 , %(X1)]. Check the predictions
of each model to ensure they are distinguishable. (E.g., the discrepancy D between
models must be nontrivial.) If discriminability is inadequate, then redo step 1.

5. Compute the discrepancy D between the predictions from step 4 and the
sample statistics observed from the second design, S(X2), for each model.

6. Select the model that produces the smallest discrepancy in step 5 as the
best in the set of models being compared.

Note that the generalization criterion can be used to compare any set of models,
nested or nonnested, and they may even differ in terms of the number of
parameters, because the selection is based on the a priori predictions computed
from each model. The use of a priori predictions puts the models on equal footing
in the generalization stage, despite the fact that the more complex model has an
unfair advantage in the calibration stage.

IV. EXAMPLES

Two examples of the generalization criterion are provided below. The first is a
simulation based on a simple hypothetical design and hypothetical data. This
hypothetical case illustrates the utility of the generalization criterion in the ideal
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case when the population parameters are known, so that sampling error does not
confuse the basic issues. The second is a simulation based on a more complex
published design and real data. This second example employs sample data that
contain sampling error.

Example 1. For the hypothetical design, imagine a preference study in which
consumers decided whether or not to purchase a product. The utility of a product
is represented by an independent variable, x, and the complete design contains 500
levels of product utilities represented by the transpose of the matrix

X=[0.01, 0.02, ..., xk , ..., 4.99, 5.0].

The complete design is divided into two parts:

X2=[0.01, 0.02, 0.03, ..., 3.50]

is the calibration design containing the first 350 levels; and

X2=[3.51, 3.52, ..., 5.0]

is the generalization design containing the last 150 extrapolation levels.
The dependent variable is the relative frequency of purchases of a product with

utility xk denoted S(xk). The population proportions, +(xk)=p limN � � S(xk ),
were generated by an S-shaped preference function bounded between zero and one:

+(x)=1&g(x, 1)�g(x, �)

g(x, y)=|
y

0
e&tt(x&1) dt.

Four models were compared using this design:

Qt[x, %t]=+(x) (true)

Qs[x, %s]=%s0+%s1 } x (simple)

Qc[x, %c]= :
j=0, q

%cj } x j (complex)

Qp[x, %p]=[1+exp(&%p1&%p2 } x)]&1 ( principled )

Model true is the true date generator. Model simple is interpreted as the over-
simplified model, model complex (with q=3) is interpreted as the overly complex
model, and both of these models lack sound scientific principles about choice
probability functions. For example, the polynomial model permits nonmonotonic
relations between utility and choice probability, despite the fact that they are
known to be increasing monotone. Also, both models simple and complex permit
predictions that lie outside of the unit interval. Model principled is interpreted as
the model based on sound scientific principles because it incorporates many of the
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TABLE 1

Parameter Estimates (Standard Errors) for Each Model

Principle Complex (q=3) Simple

0.56664 (0.1441) 0.6425 (0.0326) 0.5511 (0.0214)
1.7001 (0.1764) 0.3356 (0.0440) 0.2780 (0.0139)

&0.0567 (0.0158)
&0.0219 (0.0176)

important principles about the relation between utility and choice probability
(S-shaped between zero and one), although it is clearly wrong in detail in this
example because model true is the true model.

The negative of the mean log likelihood produced by each model was used to
measure the population discrepancy between the model predictions and the population
proportions for each design:

:m=& :
K

k=1

+(xk) ln(Qm[xk , %m])+(1&+(xk)) ln(1&Qm[xk , %m]). (3)

The parameters for each model were obtained by minimizing the population
discrepancy, :m , between the predicted and population proportions using the
calibration design. Table 1 shows the parameter estimates and their standard errors
(based on the inverse of the Hessian matrix). Note that the standard errors for the
parameters are reasonably small so that the parameter estimates are reasonably
precise.

Then these same parameters were used to make a priori predictions for the
generalization design. Table 2 provides a summary of the difference, (:m&:t),
between the negative mean log likelihood produced by model m and model true.
The second column shows the comparisons based on the calibration design (first
350 levels) and the last column shows the comparisons based on the generalization
design (last 150 levels).

First note that the overly complex model produces the minimum population
discrepancy for the calibration design (based on fitted values rather than a priori

TABLE 2

Mean Log Likelihood Ratios for Hypothetical Example

Design

Model Calibration (X1) Generalization (X2)

Principle 1.61 3.63827
Complex 0.21 9.56196
Simple 15.85 a

a Undefined because all predicted values exceeded 1.0.
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predictions). More important, the principled model produces the minimum population
discrepancy for the generalization design. The reason for this reversal is the
following fact: when the overly complex model is fit to the calibration design, it
selects a preference function that is nonmonotonic in the upper extrapolation
region.

The models were compared again using an alternative way to divide the complete
design into calibration and generalization designs.

X1=[1.51, 1.52, ..., 2.50]

is the calibration design containing the 100 intermediate levels; and

X2=[0.01, 0.02, ..., 1.50] _ [2.51, 2.52, ..., 5.0]

is the generalization design containing 150+250=400 extrapolation levels. In
addition, the overly complex model was defined by a fifth order rather than a third
order polynomial. Furthermore, the standard method of comparing models was
also performed by using the parameters that minimized the population discrepancy
between predicted and population proportions using all the levels from the
complete design.

Table 3 provides a summary of the difference, (:m&:t), between the negative mean
log likelihood produced by model m and model true. The second column shows the
comparisons based on the calibration design (middle 100 levels), the third column
shows the comparisons based on the generalization design (extrapolation levels),
and the last column shows the comparisons based on the complete design (all 500
levels).

Once again, the overly complex model produces the minimum population
discrepancy for the calibration design, and it also produces the minimum for the
complete design (both are based on post hoc fitted values rather than a priori
predictions). More important, the principled model produces the minimum population
discrepancy for the generalization design. As before, the reason for this reversal is
that when the overly complex model is fit to the calibration design, it selects a
preference function that is nonmonotonic in the upper extrapolation region. This
reflects a general problem with the overly complex model��it fails to incorporate
theoretical principles that impose appropriate constraints on the predictions.

TABLE 3

Mean Log Likelihood Ratios for Hypothetical Example

Design

Model Calibration (X1) Generalization (X2) Complete (X )

Principle 0.000181 3.63827 1.74772
Complex 0.000000 9.56196 0.00564
Simple 0.015205 95.70174 31.49282
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Flexibility and lack of appropriate constraints produce better fits at the cost of poor
extrapolation performance.

Example 2. The second example is based on a model comparison that used
real data reported by Busemeyer and Townsend (1993). College students were
asked to choose between two risky courses of action described by a payoff matrix
of the form illustrated below:

State of nature

Action 1 2

A gA &cA

B &cB gB

For example, if action A is chosen and state 1 is observed, then a gain equal to gA

dollars would be earned; but if action A is chosen and state 2 is observed, then a
cost equal to cA dollars would be lost. The complete design included a total of 29
conditions formed by manipulating the state probabilities (? and 1&?) and the
payoff magnitudes ( gA , cA , gB , cB). This total design was divided into two parts:
the calibration design consisted of 17 conditions where the payoffs varied from
small to medium magnitudes; and the generalization design consisted of 12 conditions
where the payoffs were relatively large in magnitude (see Tables 6 and 7 in
Busemeyer 6 Townsend, 1993, for details). The dependent variable was the proportion
that action A was chosen over action B.

The true model underlying the real data is unknown. However, the model used
to generate the simulated data was constructed as follows. First, the general form
of the simulation model was derived from decision field theory, which has success-
fully explained a large number of empirical facts found in the risky decision making
literature (see Busemeyer 6 Townsend, 1993). Second, the parameters of the
simulation model were obtained by selecting parameter estimates that maximized
the likelihood of the real data.

This produced the following model for generating the simulated population
proportions (denoted + as a function of the known variables gA , cA , gB , cB , and ?),

+( gA , cA , gB , cB , ?)=[1+exp[&(2.86)(d�v)]]&1, (true)

where d is the difference in expected utilities for the two actions,

d=? } [u( gA)&u(&cB)]+(1&?) } [u(&cA)&u( gB)], (4a)

and v is the variance of the utility difference,

v=? } [u( gA)&u(&cB)&d ]2+(1&?) } [u(&cA)&u( gB)&d ]2, (4b)
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and the utility function was defined by a two piece power function

u( g)=(0.545) g(0.803) for gains, ( g>0) (4c)

u(&c)=&(0.348) c(0.922) for losses, (&c<0). (4d)

The four constants used to define the utility functions in Eqs. (4c), (4d) were selected
to maximize the likelihood of the experimentally observed sample proportions.

The variance term (&) in Eq. (4a) is essential for explaining violations of strong
stochastic transitivity1 that often occur in choice experiments (see Busemeyer 6

Townsend, 1993). The basic idea is that the discriminability of a difference in utility
between two actions is moderated by the variance of the utility difference. When the
variance is small, discriminability is high, producing choice probabilities closer to
zero or one; but when the variance is large, discriminability is low, producing
choice probabilities closer to 0.50.

Three probabilistic models of risky choice are compared using simulated sample
proportions generated by the simulation model [Eq. (4)]. Model simple is inter-
preted as an oversimplified model, because it has only one free parameter and it
omits the variance term (v) in Eq. (4a):

Qa[( gA , cA , gB , cB , ?), %a]=[1+exp[&d ]]&1 (simple)

d=? } [u( gA)&u(&cB)]+(1&?) } [u(&cA)&u( gB)]

u( g)=g%a for gains ( g>0),

u(&c)=&c%a for losses, (&c<0).

The one free parameter of the oversimplified model is used to define the utility
function.

Model complex is interpreted as the overly complex model, because it has six free
parameters but it also omits the variance term (v):

Qb[( gA , cA , gB , cB , ?), %b]=[1+exp[&d ]]&1 (complex)

d=s(?) } [u( gA)&u(&cB)]+(1&s(?)) } [u(&cA)&u( gB)]

u( g)=%1b g%2b for gains ( g>0),

u(&c)=&%3b(c%4b) for losses (&c<0),

s(?)=%5b ?%6b.

Four of the six parameters of the overly complex model are used to define the
utility function, and the other two are used to define a subjective probability function.
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arbitrary actions, and let Pr(X, Y ) denote the probability of choosing X over Y. If Pr(A, B)�0.5, and
Pr(B, C)�0.5, then Pr(A, C)�max[Pr(A, B), Pr(B, C)].



Model principled is interpreted as the principled model, because it contains the
critical variance term:

Qc[(gA , cA , gB , cB , ?), %c]=[1+exp[&(d�v)]]&1 (principled )

d=? } [ gA&(&cB)]+(1&?) } [(&cA)&gB]

v=%1c+%2c } [? } [ gA&(&cB)&d ]2+(1&?) } [(&cA)&gB&d ]2].

The principled model incorrectly assumes a linear utility function and it has only
two free parameters associated with the variance term.

The sample proportions used in this analysis were simulated using the following
procedure. Recall that the complete design consists of 29 payoff conditions. The
true model [Eq. (4)] was used to generate simulated sample proportions for these
29 conditions. One simulated replication of this design produces a vector of 29 sample
proportions, [S1, r , ..., Sk, r , ..., S29, r], where Sk, r is the sample proportion for the k th
payoff condition obtained from the r th simulated replication. Each replication was
produced by randomly sampling from a binomial distribution with a sample size
equal to N=2000 for each payoff condition.2 A total of 55 replications of the complete
design was generated, producing 55 vectors of sample proportions. The models were
fit separately to each vector of simulated sample proportions, producing 55
discrepancy indices per model, and these 55 discrepancy indices were averaged to
produce a mean discrepancy for each model.

Maximum likelihood estimates of the parameters were obtained using the
calibration design for each model and replication by minimizing the sample
discrepancy

$m, r=& :
K

k=1

Sk, r ln(Qm[xk , %m])+(1&Sk, r) ln(1&Qm[xk , %m]). (5)

The arithmetic average over 55 replications was used as a single estimate of the
sample discrepancy, $m , for each model. A G2 statistic was computed for each
model using Eq. (1b):

G2=2 } N } ($m&$t).

AIC indices were then obtained for each model from Eq. (2a).
Table 4 shows the results of the model comparisons for the calibration and the

generalization designs. The second column shows the AIC values for the calibration
phase, and the last column shows the G2 produced by the generalization design. As
can be seen in this table, the AIC favors the overly complex model in the calibration
phase, but the principled model performs an order of magnitude better than the
overly complex model in the generalization design. In fact, the overly complex
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2 This matches the sample size for the real sample proportions used in the real model comparison by
Busemeyer and Townsend (1993). Simulated data were used rather than real data for two reasons��one
is that the true model can be defined for simulated data and the second is that simulated replications
of the design are possible with simulated data.



TABLE 4

Results of Model Comparison for Risky Decision Experiments

Design

Calibration Generalization

Models simple vs true AIC=840.8 (24.1) G2=6420 (45.1)
Models complex vs true AIC=44.8 (17.0) G2=74,216 (3333.1)
Models principled vs true AIC=176.8 (17.0) G2=272 (17.0)

Note. Numbers in parentheses are the standard errors of the cell means based on 55 replications.

model performs more poorly than the oversimplified model in the generalization
design.

Both the oversimplified and the overly complex models fail in the generalization
design because they lack the principle needed to explain violations of strong
stochastic transitivity. In sum, the generalization design was critical for selecting the
principled model, which is the only model that is based on the correct principles
(but wrong in detail).

V. CONCLUDING COMMENTS

The purpose of this article is to formalize the generalization criterion method for
model comparison. The method has the potential to provide powerful comparisons
of complex and nonnested models that may also differ in terms of numbers of
parameters. The generalization criterion differs from the better known cross-validation
criterion in the following critical procedure. Although both employ a calibration
stage to estimate parameters, cross-validation employs a replication sample from
the same design for the validation stage, whereas generalization employs an entirely
new design for the critical generalization stage. The main advantage of the latter is
the emphasis placed on extrapolations to new experimental conditions in the
generalization design. Accurate a priori predictions to new conditions are the
hallmark of a good scientific theory.

The generalization criterion serves a different purpose than the crossvalidation
criterion.3 The generalization criterion is useful with large sample sizes to select a
model based on sound scientific principles (but wrong details) from a set of models
that also contain oversimplified models or overly complex models (where both of the
latter are lacking sound scientific principles). The cross-validation criterion is useful
with smaller sample sizes to select the model that yields the smallest discrepancy
expected from using this model again on another replication. Therefore, the two
criteria should be viewed as complementary and useful for different purposes, rather
than as competitors for the same purpose. In fact, cross-validation (or AIC) could
be used first to decide which models to include in a subsequent generalization
criterion comparison.
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therefore it serves the same purpose as cross-validation.



The generalization criterion places very demanding requirements on the
researcher to accomplish two things simultaneously: one is to select a comprehensive
calibration design that provides precise estimates of the parameters (measured by
their standard errors), and the second is to provide a diagnostic generalization
design that discriminates among competing models. If either of these two design
issues are treated inadequately, then the generalization criterion method will fail to
work properly.

The generalization criterion also requires an important theoretical assumption��
parameter invariance across calibration and generalization design conditions. Good
scientific theories usually satisfy the property of parameter stability, so that new
parameters do not need to be estimated for every new situation. An implicit
assumption of the generalization criterion method is the existence of continuous
mappings from experimental variables to causal theoretical variables. For example,
the generalization criterion method works well for regression models, which provide
a continuous map from predictor variables to dependent variables; but this method
does not work well for analysis of variance models, which allow arbitrary mappings
and require new parameter estimates with each addition of a new experimental
condition.

It is possible to employ weaker variations of the generalization criterion. Suppose
two complex models, a versus b, are compared, and p parameters are estimated for
model a and q parameters are estimated for model b during the calibration stage;
but then r additional new parameters must be estimated for both models for the
generalization design. The generalization criterion may still be effective as long as
the same number of parameters are estimated in the generalization design. For
example, the causal parameters of two different structural equation models may be
estimated from one set of indicators during the calibration phase. Then these same
causal parameters are used to make predictions for a new set of indicators in the
generalization stage. But a common set of measurement model parameters must be
estimated for both models in the generalization stage.

Another variation of the generalization criterion is to use one set of dependent
variables or measures to estimate the parameters of each model during the calibra-
tion stage and then use these same parameters to make predictions for another set
of dependent variables in the generalization stage. This type of generalization
criterion may still be effective as long as the measures used for calibration and
generalization are not too highly correlated. For example, in another application
reported in Busemeyer 6 Townsend (1993), parameters of choice models were
estimated from the choice probabilities, and then these same parameters were used
to make predictions for choice response time.

A third variation of the generalization criterion is to randomly partition the
complete design containing K conditions into two subdesigns, a calibration subdesign
with K1 conditions and a generalization subdesign with K2 conditions. The random
division could be repeated many times to produce a distribution of generalization
criteria for each model. This corresponds to the bootstrapping procedure used with
cross-sample validation (Efron 6 Gong, 1983). However, a partition that is
skillfully crafted by a clever researcher will generally produce a more diagnostic
generalization design than a random partition.
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A fourth variation is to compute Bayesian predictions for the generalization
criterion from each model. First, the posterior distribution, fm[%m | S(X1)], over the
parameter space can be estimated for each model from the data obtained in the
calibration stage. Second, the mean of the predictions

E[Qm | fm]=| Qm[X2 , %m] f[%m | S(X1)] d%m

can then be inserted into

$m=D[E[Qm | fm], S(X1)]

to compute the sample discrepancy for each model during the generalization stage.
Alternatively, the expectation of the discrepancy can be directly computed:

E[$m | fm]=| D[Qm[X2 , %m], S(X2)] f[%m | S(X1)] d%m .

This Bayesian generalization criterion could complement the standard Bayesian
approach to model comparison (see Myung 6 Pitt, 1997, for example) which
makes use of the complete design.

Finally, the use of the generalization criterion does not preclude the use of other
model comparison methods. After performing a generalization criterion comparison,
one can always recombine all of the conditions, and reevaluate the global fit of each
model using AIC or BIC using the complete design. The latter has the advantage
of providing improved parameter estimates. The essential point is to plan ahead
and include a strong generalization design within the complete design.
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